Лабораторная работа 16. Шаговый двигатель

Шаговый двигатель — это двигатель, который способен осуществлять вращение на 1 шаг. Шаг — это угол, который обусловлен устройством каждого конкретного шагового двигателя. Основные характеристики:

Рабочее напряжение	5B
Число фаз	4
Тип шагового двигателя	Униполярный
Угол шага	Полушаговый режим: 5,625° (64 шага на оборот) Шаговый режим: 11,25° (32 шага на оборот)
Предпочтительный режим работы	Полушаговый

Для того, чтобы заставить двигатель вращаться по часовой стрелке, нужно попеременно подавать напряжение на его выходы в соответствии со следующей картой (для полушагового и шагового режимов):

Шаг	A	В	A۱	B\
0	1	1	0	0
1	0	1	0	0
2	0	1	1	0
3	0	0	1	0
4	0	0	1	1
5	0	0	0	1
6	1	0	0	1
7	1	0	0	0

Где A ~ IN3, B ~ IN4, A\ ~ IN1, B\ ~ IN2,

Обычно, вместе с мотором 28BYJ-48 поставляется модуль SBT0811, содержащий микросхему ULN2003.

Он позволяет управлять мощными нагрузками с током до 500 мА и напряжением до 12 В на канал с помощью слабого тока микроконтроллера, такого как Arduino.

Плата содержит 4 контакта IN1-IN4, которые следует соединить проводами с контактами платы Arduino. От них будут поступать управляющие сигналы с микроконтроллера. Белый разъём на плате — для подключения мотора.

Два контакта: «- + 5-12V» - это выводы для подключения внешнего источника питания от 5 до 12В. В нашем случае, источником питания будет сама плата ATmega2560, так как наш мотор питается от 5V. Поэтому эти два контакта драйвера мы подключаем к 5V и GND разъёмам на плате ATmega2560.

Четыре светодиода на плате — это индикаторы шага, показывают на какой из четырёх проводов мотора подаётся напряжение.

Схема соединения такая.

Если мы имеем дело с, скажем, 9ти вольтовым мотором, то у нас появляется в схеме блок питания на 9V. Тогда, «+» контакт на драйвере, для внешнего источника питания мы соединяем не с платой Arduino, а с проводом питания от блока, по такой схеме:

Рабочая программа

#define in1 7 #define in2 8 #define in3 9 #define in4 10

int dl = 4; // время задержки между импульсами

```
void setup() {
    pinMode(in1, OUTPUT);
    pinMode(in2, OUTPUT);
    pinMode(in3, OUTPUT);
    pinMode(in4, OUTPUT);
}
```

}

```
void loop() {
    digitalWrite(in1, LOW);
    digitalWrite(in2, LOW);
    digitalWrite(in3, HIGH);
    digitalWrite(in4, HIGH);
    delay(dl);
```

digitalWrite(in1, LOW); digitalWrite(in2, LOW); digitalWrite(in3, HIGH); digitalWrite(in4, LOW); delay(dl);

digitalWrite(in1, LOW); digitalWrite(in2, HIGH); digitalWrite(in3, HIGH); digitalWrite(in4, LOW); delay(dl);

digitalWrite(in1, LOW); digitalWrite(in2, HIGH); digitalWrite(in3, LOW); digitalWrite(in4, LOW); delay(dl);

digitalWrite(in1, HIGH); digitalWrite(in2, HIGH); digitalWrite(in3, LOW); digitalWrite(in4, LOW); delay(dl);

digitalWrite(in1, HIGH); digitalWrite(in2, LOW); digitalWrite(in3, LOW); digitalWrite(in4, LOW); delay(dl);

digitalWrite(in1, HIGH); digitalWrite(in2, LOW); digitalWrite(in3, LOW); digitalWrite(in4, HIGH); delay(dl);

digitalWrite(in1, LOW); digitalWrite(in2, LOW); digitalWrite(in3, LOW); digitalWrite(in4, HIGH); delay(dl);

}

Схема подключения

Библиотека Stepper

Рабочая программа

#include <Stepper.h> // библиотека для шагового двигателя

// количество шагов на 1 оборот, измените значение для вашего мотора const int stepsPerRevolution = 400;

// устанавливаем порты для подключения драйвера Stepper myStepper(stepsPerRevolution, 7, 8, 9, 10);

void setup() { myStepper.setSpeed(60); // устанавливаем скорость 60 об/мин

```
}
```

```
void loop() {
```

```
// поворачиваем ротор по часовой стрелке
myStepper.step(stepsPerRevolution);
delay(500);
```

```
// поворачиваем ротор против часовой стрелки
myStepper.step(-stepsPerRevolution);
delay(500);
```

```
}
```

```
http://techclub.su/article_arduino06
```